Optimizing AI Workloads with NVIDA GPUs, Time Slicing, and Karpenter (Half 2)

Optimizing AI Workloads with NVIDA GPUs, Time Slicing, and Karpenter (Half 2)

Introduction: Overcoming GPU Administration Challenges  

In Half 1 of this weblog sequence, we explored the challenges of internet hosting giant language fashions (LLMs) on CPU-based workloads inside an EKS cluster. We mentioned the inefficiencies related to utilizing CPUs for such duties, primarily as a result of giant mannequin sizes and slower inference speeds. The introduction of GPU sources supplied a big efficiency increase, but it surely additionally introduced concerning the want for environment friendly administration of those high-cost sources. 

On this second half, we are going to delve deeper into the right way to optimize GPU utilization for these workloads. We’ll cowl the next key areas: 

  • NVIDIA Machine Plugin Setup: This part will clarify the significance of the NVIDIA system plugin for Kubernetes, detailing its position in useful resource discovery, allocation, and isolation. 
  • Time Slicing: We’ll focus on how time slicing permits a number of processes to share GPU sources successfully, making certain most utilization. 
  • Node Autoscaling with Karpenter: This part will describe how Karpenter dynamically manages node scaling based mostly on real-time demand, optimizing useful resource utilization and lowering prices. 

Challenges Addressed 

  1. Environment friendly GPU Administration: Making certain GPUs are totally utilized to justify their excessive price. 
  2. Concurrency Dealing with: Permitting a number of workloads to share GPU sources successfully. 
  3. Dynamic Scaling: Routinely adjusting the variety of nodes based mostly on workload calls for. 

 Part 1: Introduction to NVIDIA Machine Plugin 

 The NVIDIA system plugin for Kubernetes is a element that simplifies the administration and utilization of NVIDIA GPUs in Kubernetes clusters. It permits Kubernetes to acknowledge and allocate GPU sources to pods, enabling GPU-accelerated workloads. 

Why We Want the NVIDIA Machine Plugin 

  • Useful resource Discovery: Routinely detects NVIDIA GPU sources on every node.
  • Useful resource Allocation: Manages the distribution of GPU sources to pods based mostly on their requests.
  • Isolation: Ensures safe and environment friendly utilization of GPU sources amongst completely different pods. 

 The NVIDIA system plugin simplifies GPU administration in Kubernetes clusters. It automates the set up of the NVIDIA driver, container toolkit, and CUDA, making certain that GPU sources can be found for workloads with out requiring guide setup. 

  • NVIDIA Driver: Required for nvidia-smi and fundamental GPU operations. Interfacing with the GPU {hardware}. The screenshot beneath shows the output of the nvidia-smi command, which exhibits key info equivalent to the driving force model, CUDA model, and detailed GPU configuration, confirming that the GPU is correctly configured and prepared to be used 

 

  • NVIDIA Container Toolkit: Required for utilizing GPUs with containerd. Under we will see the model of the container toolkit model and the standing of the service working on the occasion 
#Put in Model 
rpm -qa | grep -i nvidia-container-toolkit 
nvidia-container-toolkit-base-1.15.0-1.x86_64 
nvidia-container-toolkit-1.15.0-1.x86_64 
  • CUDA: Required for GPU-accelerated functions and libraries. Under is the output of the nvcc command, exhibiting the model of CUDA put in on the system:
/usr/native/cuda/bin/nvcc --model 
nvcc: NVIDIA (R) Cuda compiler driver 
Copyright (c) 2005-2023 NVIDIA Company 
Constructed on Tue_Aug_15_22:02:13_PDT_2023 
Cuda compilation instruments, launch 12.2, V12.2.140 
Construct cuda_12.2.r12.2/compiler.33191640_0 

Setting Up the NVIDIA Machine Plugin 

To make sure the DaemonSet runs solely on GPU-based situations, we label the node with the important thing “nvidia.com/gpu” and the worth “true”. That is achieved utilizing Node affinity, Node selector and Taints and Tolerations.

Allow us to now delve into every of those elements intimately. 

  • Node Affinity:  Node affinity permits to schedule pod on the nodes based mostly on the node labels requiredDuringSchedulingIgnoredDuringExecution: The scheduler can not schedule the Pod until the rule is met, and the secret’s “nvidia.com/gpu” and operator is “in,” and the values is “true.” 
affinity: 
    nodeAffinity: 
        requiredDuringSchedulingIgnoredDuringExecution: 
            nodeSelectorTerms: 
                - matchExpressions: 
                    - key: characteristic.node.kubernetes.io/pci-10de.current 
                      operator: In 
                      values: 
                        - "true" 
                - matchExpressions: 
                    - key: characteristic.node.kubernetes.io/cpu-mannequin.vendor_id 
                      operator: In 
                      values: 
                      - NVIDIA 
                - matchExpressions: 
                    - key: nvidia.com/gpu 
                      operator: In 
                      values: 
                    - "true" 
  • Node selector:   Node selector is the best advice kind for node choice constraints nvidia.com/gpu: “true” 
  • Taints and Tolerations: Tolerations are added to the Daemon Set to make sure it may be scheduled on the contaminated GPU nodes(nvidia.com/gpu=true:Noschedule).
kubectl taint node ip-10-20-23-199.us-west-1.compute.inside nvidia.com/gpu=true:Noschedule 
kubectl describe node ip-10-20-23-199.us-west-1.compute.inside | grep -i taint 
Taints: nvidia.com/gpu=true:NoSchedule 

tolerations: 
  - impact: NoSchedule 
    key: nvidia.com/gpu 
    operator: Exists 

After implementing the node labeling, affinity, node selector, and taints/tolerations, we will make sure the Daemon Set runs solely on GPU-based situations. We are able to confirm the deployment of the NVIDIA system plugin utilizing the next command: 

kubectl get ds -n kube-system 
NAME                                      DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE  NODE SELECTOR                                     AGE 

nvidia-system-plugin                      1         1         1       1            1          nvidia.com/gpu=true                               75d 
nvidia-system-plugin-mps-management-daemon   0         0         0       0            0          nvidia.com/gpu=true,nvidia.com/mps.succesful=true   75d 

However the problem right here is GPUs are so costly and wish to verify the utmost utilization of GPU’s and allow us to discover extra on GPU Concurrency. 

GPU Concurrency:   

Refers back to the potential to execute a number of duties or threads concurrently on a GPU 

  • Single Course of: In a single course of setup, just one utility or container makes use of the GPU at a time. This strategy is simple however could result in underutilization of the GPU sources if the appliance doesn’t totally load the GPU. 
  • Multi-Course of Service (MPS): NVIDIA’s Multi-Course of Service (MPS) permits a number of CUDA functions to share a single GPU concurrently, enhancing GPU utilization and lowering the overhead of context switching. 
  • Time slicing:  Time slicing includes dividing the GPU time between completely different processes in different phrases a number of course of takes activates GPU’s (Spherical Robin context Switching) 
  • Multi Occasion GPU(MIG): MIG is a characteristic obtainable on NVIDIA A100 GPUs that enables a single GPU to be partitioned into a number of smaller, remoted situations, every behaving like a separate GPU. 
  • Virtualization: GPU virtualization permits a single bodily GPU to be shared amongst a number of digital machines (VMs) or containers, offering every with a digital GPU. 

 Part 2: Implementing Time Slicing for GPUs 

Time-slicing within the context of NVIDIA GPUs and Kubernetes refers to sharing a bodily GPU amongst a number of containers or pods in a Kubernetes cluster. The expertise includes partitioning the GPU’s processing time into smaller intervals and allocating these intervals to completely different containers or pods. 

  • Time Slice Allocation: The GPU scheduler allocates time slices to every vGPU configured on the bodily GPU. 
  • Preemption and Context Switching: On the finish of a vGPU’s time slice, the GPU scheduler preempts its execution, saves its context, and switches to the following vGPU’s context. 
  • Context Switching: The GPU scheduler ensures clean context switching between vGPUs, minimizing overhead, and making certain environment friendly use of GPU sources. 
  • Activity Completion: Processes inside containers full their GPU-accelerated duties inside their allotted time slices. 
  • Useful resource Administration and Monitoring
  • Useful resource Launch: As duties full, GPU sources are launched again to Kubernetes for reallocation to different pods or containers 

Why We Want Time Slicing 

  • Value Effectivity: Ensures high-cost GPUs should not underutilized. 
  • Concurrency: Permits a number of functions to make use of the GPU concurrently. 

 Configuration Instance for Time Slicing  

Allow us to apply the time slicing config utilizing config map as proven beneath. Right here replicas: 3 specifies the variety of replicas for GPU sources that implies that GPU useful resource will be sliced into 3 sharing situations 

apiVersion: v1 
variety: ConfigMap 
metadata: 
  identify: nvidia-system-plugin 
  namespace: kube-system 
information: 
  any: |- 
    model: v1 
    flags: 
      migStrategy: none 
    sharing: 
      timeSlicing: 
        sources: 
        - identify: nvidia.com/gpu 
          replicas: 3 
#We are able to confirm the GPU sources obtainable in your nodes utilizing the next command:     
kubectl get nodes -o json | jq -r '.objects[] | choose(.standing.capability."nvidia.com/gpu" != null) 
| {identify: .metadata.identify, capability: .standing.capability}' 

  "identify": "ip-10-20-23-199.us-west-1.compute.inside", 
  "capability": { 
    "cpu": "4", 
    "ephemeral-storage": "104845292Ki", 
    "hugepages-1Gi": "0", 
    "hugepages-2Mi": "0", 
    "reminiscence": "16069060Ki", 
    "nvidia.com/gpu": "3", 
    "pods": "110" 
  } 

#The above output exhibits that the node ip-10-20-23-199.us-west-1. compute.inside has 3 digital GPUs obtainable. 
#We are able to request GPU sources of their pod specs by setting useful resource limits 
sources: 
      limits: 
        cpu: "1" 
        reminiscence: 2G 
        nvidia.com/gpu: "1" 
      requests: 
        cpu: "1" 
        reminiscence: 2G 
        nvidia.com/gpu: "1" 

In our case we will be capable to host 3 pods in a single node ip-10-20-23-199.us-west-1. compute. Inside and due to time slicing these 3 pods can use 3 digital GPU’s as beneath 

GPUs have been shared just about among the many pods, and we will see the PIDS assigned for every of the processes beneath. 

Now we optimized GPU on the pod stage, allow us to now give attention to optimizing GPU sources on the node stage. We are able to obtain this by utilizing a cluster autoscaling answer referred to as Karpenter. That is notably vital as the educational labs could not all the time have a relentless load or consumer exercise, and GPUs are extraordinarily costly. By leveraging Karpenter, we will dynamically scale GPU nodes up or down based mostly on demand, making certain cost-efficiency and optimum useful resource utilization. 

Part 3: Node Autoscaling with Karpenter 

Karpenter is an open-source node lifecycle administration for Kubernetes. It automates provisioning and deprovisioning of nodes based mostly on the scheduling wants of pods, permitting environment friendly scaling and price optimization 

  • Dynamic Node Provisioning: Routinely scales nodes based mostly on demand. 
  • Optimizes Useful resource Utilization: Matches node capability with workload wants. 
  • Reduces Operational Prices: Minimizes pointless useful resource bills. 
  • Improves Cluster Effectivity: Enhances general efficiency and responsiveness. 

Why Use Karpenter for Dynamic Scaling 

  • Dynamic Scaling: Routinely adjusts node depend based mostly on workload calls for. 
  • Value Optimization: Ensures sources are solely provisioned when wanted, lowering bills. 
  • Environment friendly Useful resource Administration: Tracks pods unable to be scheduled attributable to lack of sources, evaluations their necessities, provisions nodes to accommodate them, schedules the pods, and decommissions nodes when redundant. 

Putting in Karpenter: 

 #Set up Karpenter utilizing HELM:
helm improve --set up karpenter oci://public.ecr.aws/karpenter/karpenter --model "${KARPENTER_VERSION}" 
--namespace "${KARPENTER_NAMESPACE}" --create-namespace   --set "settings.clusterName=${CLUSTER_NAME}"    
--set "settings.interruptionQueue=${CLUSTER_NAME}"    --set controller.sources.requests.cpu=1    
--set controller.sources.requests.reminiscence=1Gi    --set controller.sources.limits.cpu=1    
--set controller.sources.limits.reminiscence=1Gi 

#Confirm Karpenter Set up: 
kubectl get pod -n kube-system | grep -i karpenter 
karpenter-7df6c54cc-rsv8s             1/1     Operating   2 (10d in the past)   53d 
karpenter-7df6c54cc-zrl9n             1/1     Operating   0             53d 

 Configuring Karpenter with NodePools and NodeClasses:  

Karpenter will be configured with NodePools and NodeClasses to automate the provisioning and scaling of nodes based mostly on the precise wants of your workloads 

  • Karpenter NodePool: Nodepool is a customized useful resource that defines a set of nodes with shared specs and constraints in a Kubernetes cluster. Karpenter makes use of NodePools to dynamically handle and scale node sources based mostly on the necessities of working workloads 
apiVersion: karpenter.sh/v1beta1 
variety: NodePool 
metadata: 
  identify: g4-nodepool 
spec: 
  template: 
    metadata: 
      labels: 
        nvidia.com/gpu: "true" 
    spec: 
      taints: 
        - impact: NoSchedule 
          key: nvidia.com/gpu 
          worth: "true" 
      necessities: 
        - key: kubernetes.io/arch 
          operator: In 
          values: ["amd64"] 
        - key: kubernetes.io/os 
          operator: In 
          values: ["linux"] 
        - key: karpenter.sh/capability-sort 
          operator: In 
          values: ["on-demand"] 
        - key: node.kubernetes.io/occasion-sort 
          operator: In 
          values: ["g4dn.xlarge" ] 
      nodeClassRef: 
        apiVersion: karpenter.k8s.aws/v1beta1 
        variety: EC2NodeClass 
        identify: g4-nodeclass 
  limits: 
    cpu: 1000 
  disruption: 
    expireAfter: 120m 
    consolidationPolicy: WhenUnderutilized 
  • NodeClasses are configurations that outline the traits and parameters for the nodes that Karpenter can provision in a Kubernetes cluster. A NodeClass specifies the underlying infrastructure particulars for nodes, equivalent to occasion sorts, launch template configurations and particular cloud supplier settings. 

Be aware: The userData part comprises scripts to bootstrap the EC2 occasion, together with pulling a TensorFlow GPU Docker picture and configuring the occasion to affix the Kubernetes cluster. 

apiVersion: karpenter.k8s.aws/v1beta1 
variety: EC2NodeClass 
metadata: 
  identify: g4-nodeclass 
spec: 
  amiFamily: AL2 
  launchTemplate: 
    identify: "ack_nodegroup_template_new" 
    model: "7"  
  position: "KarpenterNodeRole" 
  subnetSelectorTerms: 
    - tags: 
        karpenter.sh/discovery: "nextgen-learninglab" 
  securityGroupSelectorTerms: 
    - tags: 
        karpenter.sh/discovery: "nextgen-learninglab"     
  blockDeviceMappings: 
    - deviceName: /dev/xvda 
      ebs: 
        volumeSize: 100Gi 
        volumeType: gp3 
        iops: 10000 
        encrypted: true 
        deleteOnTermination: true 
        throughput: 125 
  tags: 
    Title: Learninglab-Staging-Auto-GPU-Node 
  userData: | 
        MIME-Model: 1.0 
        Content material-Sort: multipart/combined; boundary="//" 
        --// 
        Content material-Sort: textual content/x-shellscript; charset="us-ascii" 
        set -ex 
        sudo ctr -n=k8s.io picture pull docker.io/tensorflow/tensorflow:2.12.0-gpu 
        --// 
        Content material-Sort: textual content/x-shellscript; charset="us-ascii" 
        B64_CLUSTER_CA=" " 
        API_SERVER_URL="" 
        /and so on/eks/bootstrap.sh nextgen-learninglab-eks --kubelet-further-args '--node-labels=eks.amazonaws.com/capacityType=ON_DEMAND 
--pod-max-pids=32768 --max-pods=110' -- b64-cluster-ca $B64_CLUSTER_CA --apiserver-endpoint $API_SERVER_URL --use-max-pods false 
         --// 
        Content material-Sort: textual content/x-shellscript; charset="us-ascii" 
        KUBELET_CONFIG=/and so on/kubernetes/kubelet/kubelet-config.json 
        echo "$(jq ".podPidsLimit=32768" $KUBELET_CONFIG)" > $KUBELET_CONFIG 
        --// 
        Content material-Sort: textual content/x-shellscript; charset="us-ascii" 
        systemctl cease kubelet 
        systemctl daemon-reload 
        systemctl begin kubelet
        --//--

On this state of affairs, every node (e.g., ip-10-20-23-199.us-west-1.compute.inside) can accommodate as much as three pods. If the deployment is scaled so as to add one other pod, the sources shall be inadequate, inflicting the brand new pod to stay in a pending state.  

 

Karpenter displays these Un schedulable pods and assesses their useful resource necessities to behave accordingly. There shall be nodeclaim which claims the node from the nodepool and Karpenter thus provision a node based mostly on the requirement. 

 

 Conclusion: Environment friendly GPU Useful resource Administration in Kubernetes 

With the rising demand for GPU-accelerated workloads in Kubernetes, managing GPU sources successfully is important. The mix of NVIDIA Machine Plugin, time slicing, and Karpenter gives a strong strategy to handle, optimize, and scale GPU sources in a Kubernetes cluster, delivering excessive efficiency with environment friendly useful resource utilization. This answer has been carried out to host pilot GPU-enabled Studying Labs on developer.cisco.com/studying, offering GPU-powered studying experiences.

Share: